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Implementation of Monte Carlo Tree Search
(MCTS) Algorithm in COMBATXXI using

JDAFS
Chapter 1

Introduction

Background
The implementation of the Monte Carlo Tree Search (MCTS) algorithm into the Com-
bined Arms Analysis Tool for the 21st Century (COMBATXXI) project is an extension of
work completed in FY13.1 The TRADOC Analysis Center - Methods and Research Office
(TRAC-MRO) sponsored this iteration in an attempt to test the feasibility implementing
the algorithm into the COMBATXXI simulation environment. For further details on the
specific algorithm of more background information see appendix B and the previous technical
report.2

Problem Statement
To execute the Monte Carlo Tree Search (MCTS) algorithm for autonomous
decision-making agents within COMBATXXI.

Issue 1: Integration of algorithm using JDAFS.

EEA 1.1: Will the algorithm execute using JDAFS to build state space?
EEA 1.2: What changes to the algorithm are necessary for integration into COM-

BATXXI?

Issue 2: COMBATXXI Interface.

EEA 2.1: Does the algorithm interface with COMBATXXI?
EEA 2.2: How does the algorithm change the force on force decisions in COMBAT-

XXI?

1See MAJ Christopher Marks et al. Mission Command Analysis Using Monte Carlo Tree Search. Tech. rep.
TRAC-M-TR-13-050. 700 Dyer Road Monterey, California 93943: TRADOC Analysis Center - Monterey,
2013. url: "https://ako.hq.tradoc.army.mil/sites/trac/MTRY/SitePages/Home.aspx".

2See ibid.
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Constraints, Limitations, & Assumptions

• Constraints3

– Complete by 30 JUN 14.

• Limitations4

– We will carry out all experimentation in simulation environments
for which we can obtain programmer support.

– Rewards functions will be defined by the study team.

• Assumptions5

– Implementation will not require modification of COMBATXXI.
– Algorithm will operate outside of COMBATXXI.
– Will require link between COMBATXXI and the algorithm.
– Algorithm will use JDAFS to populate state-space.
– Contractor support for coding will be available.

3Constraints limit the project team’s options to conduct the research.
4Limitations are a project team’s inabilities to investigate issues within the sponsor’s bounds.
5Assumptions are research-specific statements that are taken as true in the absence of facts.
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Chapter 2
Analysis and Methodology

In this chapter, we examine the methodology in which we approach the problem. Our
methodology included four steps:

1. Define the Problem.

• Literature review.

• Assemble the team.

2. Scenario Development.

• Create prototype use-case in JDAFS.

• Expand use-case to implement using JDAFS.

3. Test and Evaluation.

• Integrate the use-case in COMBAT XXI.

• Test use-case against base-case.

4. Analysis

• Documentation of implementation.

All steps which were completed are expanded in the following sections. After further ex-
ploration (See Project Termination Section) , this methodology was abbreviated and half of
step 2 and all of step 3 were not completed.

Define the Problem

We conducted the literature review and assembled the team during the initial phase of the
project. The literature review consisted of the materials referenced in the previous technical
report6 along with additional materials7 to become familiar with the algorithm.

6See Marks et al., Mission Command Analysis Using Monte Carlo Tree Search, op. cit.
7see Mark HM Winands, Yngvi Björnsson, and Jahn-Takeshi Saito. “Monte-carlo tree search solver”. In:

Computers and Games. Springer, 2008, pp. 25–36.
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Figure 1. COMBATXXI MCTS test scenario.

The project team initially held meetings with TRAC-White Sands Missile Range (TRAC-
WSMR)8 to understand the stakeholders concerns. We also met with the sponsor9 for ap-
proval of the restated problem statement and technical approach.

Scenario Development

Prototype

The scenario development began with the scenario suggested by the previous tech report.10

This is a brief overview as described in that report.

“Our scenario consists of a group of “red” riflemen are advancing on a single
“blue” grenadier in a fixed position (see figure 1). Armed with an assault rifle
(60 rounds) and a grenade launcher (12 grenades), the grenadier must decide
with which weapon to engage the enemy. By varying the number of red troops
advancing on the blue grenadier, we can use the results of MCTS runs to gain
insight into what situations the grenadier should choose each weapon over the
other in order to get the best effects, and when it might be best to switch
weapons during engagements. The red elements will execute COMBATXXI
default behaviors, i.e., they will engage the blue entity once they it is within
range. For the purpose of this analysis, the advancing red troops will remain
relatively concentrated. The results of this analysis might be useful in
informing the CombatXXI weapons selection behavior, which currently simply
selects weapons from a weapon-priority list.”11

8Mr. Blane Wilson of Mission Command and Mr. Dave Ohman of Modeling and Simulation
9Mr. Paul Works of the Methods and Research Office (MRO)

10See Marks et al., Mission Command Analysis Using Monte Carlo Tree Search, op. cit., pp. 54-56.
11See ibid., p. 54.
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Figure 2. MCTS Implementation Strategy

Implementation Strategy

Once we had our initial prototype we discussed implementation strategy. COMBATXXI is
a high resolution simulation in which a small scenario can be computationally expensive.
With this consideration in mind we re-examined our fundamental objective of evaluating
mission command within the scenario. In order to run the scenario multiple times to build
the state space we must consider the computational cost.

Our approach (see figure 2) creates predetermined criteria for decisions within a COMBAT-
XXI scenario. When these conditions are met the scenario stops. The current entity state
and scenario conditions are transfered into JDAFS, a low resolution simulation which is not
computationally expensive. The MCTS algorithm runs, building the state spaces in the tree
using the JDAFS simulation.

Once the stopping criteria within the algorithm is reached and a decision is made, the decision
is passed back to COMBATXXI for execution by the entity. COMBATXXI continues the
simulation executing the decision until completion or stopping criteria is met again.
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Implementation Considerations

To implement this strategy, we identified the entity and scenario variables which were nec-
essary to transfer to JDAFS, considering the limitation of the simulator. We first identified
what is important to the scenario and what can be left out. We began framing the answer
but quickly went outside the capacity of what the team knew of the current programming
codes of the simulations.

Realizing our lack of expertise in programming, it was clear there was a contract requirement
for programming support for a programmer familiar with the languages used in JDAFS and
COMBATXXI. We worked with the NPS contracting cell to announce the requirement which
became a lengthy process12

Project Termination

While going through the contracting process, we decided not to pursue a contract effort
because even if we did, the cost in terms of computing time would have been prohibitive
to the point of non-use. This was identified to the sponsor13 and the lead stakeholder14

during an In-Progress-Review. They agreed to terminate the project because of the fore-seen
limitations to implementing the algorithm in COMBATXXI due to prohibitive computing
time even if completed.

Test and Evaluation

This phase was not completed due to the decision to not go forward with contracted pro-
gramming support.

Analysis

This project is documented in this technical report.

12More than 6 months before the performance work statement was posted.
13Mr. Paul Works of the Methods and Research Office (MRO)
14Mr. Chad Mullis, Director, Models and Simulation, TRAC-WSMR
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Chapter 3
Conclusion

The MCTS algorithm has merits for implementation within the simulation environment as an
autonomous decision tool to aid in mission command analysis. COMBATXXI, in its current
configuration, is not the right platform for MCTS algorithm implementation as concurred
by the sponsor and lead stakeholder. The findings of this project support implementing the
algorithm using a low resolution simulation, such as JDAFS, to find the “best” decision but
implementing this algorithm in a high resolution simulation such as COMBATXXI is not
prudent at this time.
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Project Title: Analyzing the Impact of Mission Command in Simulation Envi-
ronments

Sponsor/Manager: TRAC-MRO (Mr. Paul Works)

1 General Information

Government Lead:

MAJ Christopher Marks, TRAC-Monterey, ATTN: ATRC-RDM, 700 Dyer Road, Monterey,
CA 93943, 831-656-3751 (DSN 756-3751), FAX 831-656-3084, cemarks@nps.edu.

Resource Management POC:

MAJ Edward Masotti, TRAC-Monterey, ATTN: ATRC-RDM, 700 Dyer Road, Monterey,
CA 93943. 831-656-6271 (DSN 756-6271), FAX 831-656-3084 emmasott@nps.edu.

Technical POC:

LTC Jon Alt, Director, TRAC-Monterey, ATTN: ATRC-RDM, 700 Dyer Road, Monterey,
CA 93943. 831-656-3086 (DSN 756-3086), FAX 831-656-3084 jkalt@nps.edu.

Project Objective: To demonstrate analysis of mission command in military simulation
environments using Monte Carlo Tree Search and other methods from artificial intelligence.

Background: Mission Command is the exercise of authority and direction by the comman-
der using mission orders to enable disciplined initiative within the commander’s intent to
empower agile and adaptive leaders in the conduct of unified land operations [1]. Military
simulation environments for analysis represent entity decision-making to varying degrees,
but typically limit decision-making to a set of first order logic rules. This makes it difficult
to conduct analysis to understand the value of a decision in a given situation. TRAC-MTRY
is wrapping up a six-month effort that applied Monte Carlo Tree Search (MCTS), an AI
method for identifying good paths through a decision space, to address several military
decision making situations:

• Mission area assignment and scheduling for aerial platforms.

• Weapons selection decisions in COMBATXXI.

• Subordinate element assignments in the Joint Dynamic Allocation of Fires and Sensors
(JDAFS) simulation environment.

The output of this initial effort will be several simple MCTS implementations, along with
analysis and documentation of the results. Based on these results, the team recommends
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further research to apply MCTS methods into more complex scenarios in order to conduct
more relevant analyses.

Technical Approach: This follow-on research effort will begin with detailed problem defi-
nition work with the sponsor. Following the problem definition phase, the project team will
develop simulation use-cases with analysis goals oriented on mission command relevant to
TRAC studies and research. These use-cases will include specific implementations of MCTS
or a related AI method and will leverage initial implementation work from the previous
year’s effort conducted in COMBATXXI. The team will develop and execute a design of
experiments for each use-case and will provide documentation of all results to the sponsor
and a recommendation on the use of these techniques to enable mission command analysis.

2 Milestones and Deliverables

Schedule:

N Receipt of funds
N+1 Problem definition; initial IPR to sponsor.
N+3 Use-cases & analysis goals identified, IPR to sponsor.
N+6 Use-case scenario files and MCTS implementations complete, IPR to sponsor.
N+9 Experimentation complete, final IPR to sponsor.
N+10 Documentation complete.

Deliverables:

• Deliverable 1. Use case scenario files and updated MCTS implementations.

• Deliverable 2. Design of experiments with results.

• Deliverable 3. Documentation of all analyses and recommendations for analysis of
mission command in simulation environments.

3 Project Funding Information

Total Funds: $135,000.

$90,000 NPS faculty
$45,000 TRAC-WSMR Developer
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[1] Headquarters, Department of the Army. Army Doctrine Publication (ADP) 6-0; Mission
Command. Government Printing Office, Washington, D.C., May 2012.
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ABSTRACT: The modeling and simulation community has used probability threat maps and other similar 
approaches to address search problems and improve decision-making. Probability threat maps describe the 
probability of a location containing one or more enemy entities at a particular time. Although useful, they only 
describe the likelihood that the location is occupied without addressing the degree to which it is occupied. Thus, we 
investigate whether threat density maps that describe the searcher’s expectation of seeing a number of target agents 
at a certain location in a given time interval are a viable method for improving synthetic behaviors in combat 
simulations. As a proof of principle, this paper introduces a probability model which quantifies the searcher agent’s 
subjective belief about the number of enemy entities in a location, given the initial information described by a prior 
density function and the information provided by the assumed sensing model. In addition, this paper discusses a 
framework for initializing the model, as well as the model’s key advantages and current limitations.  
 
 
1. Introduction 
 
A probability threat map is a knowledge representation 
of the search environment as a discrete probability 
distribution, which provides a snapshot in time of 
unobserved threat locations. More specifically, 
probability threat maps are models of the perceived 
threat that describe the probability that any given one 
of a number of unseen entities that are moving 
independently is in a location (Darken, McCue, & 
Guerrero, 2010). They have been applied successfully 
to drive the synthetic behaviors for target scanning in 
military training simulations by prioritizing locations 
that are most likely to contain targets (Darken et al., 
2010; Evangelista, Ruck, Balogh, & Darken, 2011). 
 
Probability threat maps are derivatives of probabilistic 
occupancy maps used by game developers for 
opponent and target tracking (Isla & Blumberg, 2002; 
Isla, 2006); in addition, they use methods and 
techniques originally developed for mobile robotics 
designed to improve localization, search, navigation, 
and decision-making behaviors (Elfes, 1989; Thrun 
2003). Others analogous approaches have been applied 
to investigate search problems with incomplete and 
uncertain information using unmanned aerial sensors 
and autonomous ground sensors (Bertucelli & How, 
2005, 2006; Chung & Burdick, 2008, 2012; Chung, 
Kress, & Royset, 2009; Kagan & Ben‐Gal, 2013). 
 
Existing probability threat maps approaches for 
military simulations (Darken et al., 2010; Evangelista 

et al., 2011) provide simulated entities with subjective 
knowledge of likely enemy locations over a defined 
area, which is then used to carry out search decisions 
and search behaviors (e.g., select the next search area, 
modify movement, change tactical formations, path 
planning). These methods successfully improved the 
representation of search based on situational awareness 
and environmental factors in military simulations. 
However, there is a stated need and interest for 
expanding these methods essentially to enhance the 
representation of search, reasoning, and decision-
making behaviors in combat simulations.  
 
We believe that the current implementation of 
probability threat maps could be augmented with 
additional subjective knowledge of the threat necessary 
to model and simulate combat scenarios. Probability 
threat maps use statistical description of likely enemy 
locations but lack the ability to infer the number of the 
enemy from observed data and prior information. 
Ideally, the searcher should gain whatever information 
he can during the search process and then assess his 
subjective belief to infer the likely disposition (i.e. 
location and number of entities) of the threat.  
 
A threat density map is a knowledge representation of 
the expected number of the enemy entities located 
inside each subdivision of the simulated area. More 
specifically, it quantifies the searcher agent’s 
expectation of finding a number of enemy entities at a 
particular location in a time interval. The purpose 
threat density maps is to augment combat simulations 
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with actionable subjective knowledge that can be 
exploited by the simulated entities for reasoning and 
decision-making in response to the threat and 
environment circumstances. 
 
In contrast to probability threat maps, threat density 
maps provide the searcher agent with additional data 
needed in combat simulated scenarios to make better 
decisions amongst different courses of action 
consistent with the situation presented by the enemy 
forces (Pew & Mavor, 1998). For instance, depending 
on the size of the enemy forces the searcher agent can 
decide whether to defend, assault, attack, withdraw, 
avoid combat, or bypass. Such decisions would control 
other behaviors such as searching techniques, path 
planning, patrolling strategies, etc. In this context, 
simulated entities would have additional threat 
knowledge to reason and act upon.  
 
In this paper, we introduce a threat density map model 
as a proof of principle. We build on current probability 
threat maps approaches to model the searcher’s 
subjective belief regarding the threat size as a posterior 
density map instead of a discrete probability 
distribution. The main contribution of this paper is the 
formulation of the proposed threat density map model 
for combat simulations. This introductory section is 
followed, in Section 2, with a description of the 
problem and the model formulation. Section 3 
describes the advantages and limitations of the current 
state of the model. Section 4 provides concluding 
remarks and discusses the direction of the future 
research.  
 
2. Problem Description and Formulation 
 
A threat density map, 𝒕𝒎, is a random variable defined 
over a finite set of locations, 𝑋, which assigns a score 
to each individual cell 𝑥! ∈ 𝑋, 𝑖 = 1,… ,𝐶, at a certain 
time step 𝑡 describing the expected number of enemy 
entities in each cell. The set of locations, 𝑋, represents 
the area of operations discretized into a two-
dimensional grid comprising 𝐶 total cells, which can 
either be unoccupied or occupied by one or more 
enemy entities. The random variable 
𝒕𝒎 = 𝑡𝑚!,… , 𝑡𝑚!  denotes the state of the threat 
density map, where the random variable 𝑡𝑚! indicates 
the number of enemy entities in cell 𝑥!. Let 𝑘 ∈ ℤ! be 
the grand total number of enemy entities across all cells 
in 𝑋, namely, 𝑘 = 𝑡𝑚!

!
!!! .  

 
Our fundamental problem is to infer the unknown 
value of 𝑡𝑚!, namely the unknown number of enemy 
entities located in the individual cells, based on a 
sequence of sensing outcomes and assumptions about 
the success of those sensing actions. To accomplish 
this, we first initialize each cell with a prior density 
function, 𝑝 𝑡𝑚! , based on how the searcher believes 

the enemy is spatially distributed and the certainty of 
prior information available. This prior information is 
then combined with the data from our assumed sensing 
model, 𝑝 𝑠!!|𝑡𝑚! , which is the probability density 
function of the number of enemy entities sensed in cell 
𝑥! at time step 𝑡, 𝑠!!, conditional on  𝑡𝑚!. Finally, for 
each individual cell we update the prior 𝑝 𝑡𝑚!  to the 
posterior, 𝑝 𝑡𝑚!|𝛿!! , with the data from the sensing 
model, 𝑝 𝑠!!|𝑡𝑚! , and infer the expected number of 
enemy entities through successive Bayesian updates.  
 
It is important to define key assumptions required for 
our framework. First, the total number of enemy 
entities in the set of locations is a priori unknown but 
bounded by 𝑘 enemy entities. Second, the spatial 
distribution of the enemy entities across the set of 
locations can be represented with a prior density 
function. Third, the number of enemy entities in any 
given cell is independent of the number of entities in 
all other cells. Lastly, sensing actions within the same 
cell are conditionally independent from other sensing 
actions whether in the same cell or in other cells. 
Clearly, the assumptions of independence and 
conditional independence may not be realistic as the 
knowledge that a cell is occupied or not at a particular 
time can help figure out the state of it and other cells at 
the current and future times. However, these 
assumptions, commonly used in related literature, 
reduce computational complexities and allow us to 
decompose the problem for solving threat density maps 
for the individual cells independently (Thrun, 2003; 
Merali & Barfoot, 2013). 
 
2.1. Initializing Threat Density Maps 
 
To initialize 𝑡𝑚! at time step 𝑡 = 0, we choose a prior 
density function, 𝑝 𝑡𝑚! , for every cell to represent the 
searcher’s subjective belief about the enemy’s spatial 
distribution in the location set previous to initiating the 
search. This prior density function summarizes the 
probability that the random variable 𝑡𝑚! takes on any 
given values 𝑛, which we can write explicitly as 
𝑝 𝑡𝑚! = 𝑛 .  
 
Defining sensible prior density functions varies by the 
type of prior information (i.e. specific, vague, 
insufficient) about the enemy and the unknown 
parameter 𝑡𝑚!. Information regarding the enemy (e.g., 
size, composition, known or suspected locations, likely 
formations and movement) normally exists in military 
scenarios for combat simulations and should be used to 
initialize priors for each cell. Exact or credible 
intelligence data available (e.g., intelligence reports, 
situation reports, satellite imagery) of the enemy and 
the environment can be useful to define 𝑘 and strong 
priors and perhaps to define other aspects of the world 
(e.g., likely movement routes, probable employment 
areas, key terrain, obstacles). On the other hand, with 
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vague intelligence data we might have to assume a 
prior based on general considerations (e.g. most 
probable or most dangerous enemy disposition). 
 
In brief, we have distinct cases of prior information 
available (i.e. specific, vague, and no prior information 
available) to consider when specifying 𝑝 𝑡𝑚! . The 
inclusion of prior information into the prior 𝑝 𝑡𝑚!  is 
one of the benefits of our approach because it leads to 
stronger inferences about 𝑡𝑚!. Regardless of the level 
of certainty, we can specify a prior to quantify 
uncertainty around the spatial distribution of the enemy 
entities and express what is believed or known about 
𝑡𝑚! before inspecting any cell 𝑥! ∈ 𝑋. Below we 
discuss a discrete prior density function that can be 
used to initialize the 𝑝 𝑡𝑚!  with prior information. 
 
2.1.1. Discrete Prior Density Function 
 
Consider the case in which the search agent lacks or 
has vague prior information. A common practice in 
such situation is to define a conventional prior, such as 
the discrete uniform, that does not favor any particular 
value. However, as previously mentioned prior 
information for combat simulation scenarios is 
typically available. Therefore, it is then sensible to 
define a prior density function that can account for a 
broad range of possibilities fundamental to combat 
simulated scenarios. 
 
For this particular problem, with no idea about the 
distribution of 𝑡𝑚! we define a discrete prior assuming 
that any cell in 𝑋 could contain up to 𝑘 targets evenly 
distributed but more likely for the enemy to be 
nonexistent in some cells. Accordingly, 𝑡𝑚! is a 
discrete random variable with a finite range bounded 
by 𝑘, i.e., 0, 1,… , 𝑘 . Further, we assume that the 
prior  is defined for each cell such that 𝑝 𝑡𝑚! = 1 𝑘 
for 𝑛 = 1,… , 𝑘. However, our prior subjective belief 
inclines us to anticipate that many cells will be empty 
rather than occupied because enemy forces tend to 
cluster together whether they operate as cohesive large 
element or as smaller dispersed elements. To represent 
such belief we define the parameter 𝜀 such that each of 
the values in the range 1 ≤ 𝑛 ≤ 𝑘 occurs with 
probability 𝜀 1 𝑘  and 1 − 𝜀  for 𝑛 = 0. That is, the 
unconditional prior probability distribution for an 
individual cell is given by the following probability 
density function: 
 

 

  

p tmi = n( ) =
ε 1

k( ),    n = 1,  2,  . . . ,  k
1− ε ,       n = 0
0,           o therwise

⎧

⎨
⎪⎪

⎩
⎪
⎪

 (1) 

 
 

The expected value of the random variable 𝑡𝑚! for cell 
𝑥! at time step 𝑡 = 0 is: 
 

 
  
µtmi

= E(tmi ) = nε 1
k( ) = ε k +1

2( )
n=1

k

∑   (2) 

 
Although the choice of 𝜀 is subjective it is also suitable 
to initialize 𝑝 𝑡𝑚!  when specific prior information is 
available. For instance, suppose we know the mean 
number of enemy entities for some specific cells. In 
this case, we do not have any difficulty incorporating 
this information in 𝑝 𝑡𝑚! . We simply solve Eq. (2) for 
𝜀, i.e., 𝜀 = 2𝜇 (𝑘 + 1), for 𝜀 ∈ [0,1], and use this 
value to define the prior of 𝑡𝑚! for those particular 
cells. 
 
2.2. Sensing Model 
 
Sensing actions, namely, observing or inspecting cells, 
are knowledge-producing events that changes the 
searcher’s subjective belief of the threat. The 
searcher’s ability to observe enemy entities in a cell is 
modeled using the combat simulation’s target detection 
model, which specifies the probability of detecting a 
target, 𝑃!, as a function of the brightness of the target, 
the brightness of the target’s background, and the 
subjective size of the target given that one or more 
targets are present in the location. Although 𝑃! varies 
by type of target, it is generally constant for targets of 
the same type and size, and against a particular 
background.  
 
In our framework, sensing actions represent binomial 
trials with 𝑘 + 1  possible outcomes (i.e. observing 
between zero and 𝑘 enemy entities) of the actual 
number of entities in the cell. They return the number 
of enemy entities sensed, 𝑠!!, in cell 𝑥! at time step 𝑡. 
Therefore, we specify a binomial sampling model, 
𝑝 𝑠!!|𝑡𝑚! , which describes the searcher’s ability to 
gain subjective knowledge regarding 𝑡𝑚!. This 
sampling model provides the conditional probability 
that 𝑠!! is 𝑏 conditioned on 𝑡𝑚! and given 𝑃!, i.e., 
𝑝 𝑠!!|𝑡𝑚! = 𝑝 𝑠!! = 𝑏|𝑡𝑚! = 𝑛 , expressed as 
 

 
  
p si

t = b tmi = n( ) = n!
b! n− b( )! Pd( )b 1− Pd( )n−b   (3) 

 
for 𝑏 = 0, 1,… , 𝑘 and 0 ≤ 𝑃! ≤ 1. In Eq. (3) the 
binomial coefficient 𝑛! 𝑏! 𝑛 − 𝑏 ! describes the 
number of combinations of 𝑛 things taken 𝑏 at a time 
without regard of their order; 𝑃! ! is the likelihood of 
𝑏 detections given 𝑃!; and 1 − 𝑃! !!! is the 
probability of missing 𝑛 − 𝑏  of the possible 
detections. 
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2.3. Multiple Sensing Actions 
 
Above we focused on the probability for a single 
sensing action at time step 𝑡. However, our goal is to 
infer 𝑡𝑚! based on all cell inspections through time 
step 𝑡. Let 𝑝 𝛿!!|𝑡𝑚!  indicate the distribution of the 
sensing outcomes for cell 𝑥! up to time step 𝑡 and let 
𝛿!! = 𝑠!

!! ,… , 𝑠!
!!  denote the history of the number of 

enemy entities sensed through time step 𝑡. Assuming 
multiple inspections of cell 𝑥! at different time steps, 
𝑠!
!!, 𝑗 = 1,… , 𝑡, represents the number of enemy 

entities sensed at time 𝜏!.  
 
As previously stated, the probability of each sensing 
action is conditionally independent of other sensing 
actions; specifically, 𝑠!! and 𝛿!!!! are conditionally 
independent given 𝑡𝑚!. In other words, if 𝑡𝑚! is 
known, additional knowledge of 𝛿!!!! does not change 
the searcher’s belief about how many enemy entities he 
will see at the next observation (𝑠!!). Therefore, the 
probability of the data set (i.e. history of the enemy 
entities sensed) is given by: 
 
   p δ i

t tmi( ) = p si
t ,δ i

t−1 tmi( ) = p si
t tmi( ) p δ i

t−1 tmi( )  (4) 
 
2.4. Updating Threat Density Maps 
 
We now discuss how to update probabilities after a 
new sensing action is performed. According to 
Bayesian inference, we can estimate the posterior 
through time step 𝑡, 𝑝 𝑡𝑚!|𝛿!! , given a prior on 𝑡𝑚! 
and the data resulting from the sensing model, 
𝑝 𝑠!! 𝑡𝑚! . Applying Bayes rule to the terms 
𝑝 𝛿!!|𝑡𝑚!  and 𝑝 𝛿!!!!|𝑡𝑚!  in Eq. (4) and with the 
conditional independence assumption of the sensing 
actions results in the posterior density function 
𝑝 𝑡𝑚!|𝛿!!  of 𝑡𝑚! given the history of enemy entities 
sensed in cell 𝑥! through time step 𝑡. The posterior 
density is given by 
 

 
  
p tmi δ i

t( ) = p si
t tmi( ) p tmi δ i

t−1( )
p si

t δ i
t−1( )   (5) 

 
where 𝑝 𝑠!!|𝑡𝑚!  is obtained from the sensing model in 
Eq. (3); p 𝑡𝑚!|𝛿!!!!  represents either a prior at time 
step 𝑡 = 0, i.e., 𝑝 𝑡𝑚! , or a posterior without the most 
recent sensing action result; and 𝑝 𝑠!! 𝛿!!!!  is the 
normalization factor resulting from marginalizing over 
𝑡𝑚! and applying the foregoing conditional 
independence assumption of sensing actions given 𝑡𝑚!: 
 

 
  
p si

t δ i
t−1( ) = p si

t tmi = n( )
n=0

k

∑  p tmi = n δ i
t−1( ).   (6) 

 

Substituting Eq. (6) in Eq. (5), the individual cell 
beliefs can be updated using the following: 
 

 

  

p tmi δ i
t( ) =

p si
t tmi( ) p tmi δ i

t−1( )

p si
t tmi = n( )

n=0

k

∑  p tmi = nδ i
t−1( )

.   (7) 

 
Eq. (7) results in a distribution of the unknown number 
of enemy forces in the cell conditioned on the observed 
sample data. Thus we have a probability model that 
quantifies the searcher’s new state of subjective belief 
about 𝑡𝑚!, given the initial information described by 
the prior 𝑝 𝑡𝑚!  and the information provided by the 
sensing model 𝑝 𝑠!!|𝑡𝑚! . 
 
2.5. Inference about the Number of Enemy Entities 
 
During initialization we estimate the expected number 
of enemy entities for every cell from the prior 
probabilities and maintain this during runtime until the 
cell posterior distribution is updated after a sensing 
action. Once the posterior is computed, we utilize Eq. 
(8) to determine the expected number of entities 𝑥!.  
 

 
  
E tmi δ i

t( ) = np tmi = nδ i
t( )

n=0

k

∑ .   (8) 

 
3. Advantages of Threat Density Maps 
 
In this section we discuss the advantages of providing 
simulated entities with threat density maps as well as 
the limitations of the current state of the model. Simply 
put, the main advantage of the proposed approach as 
compared to probability threat maps is that a threat 
density map provides a probability distribution of the 
unknown number of enemy entities and the expected 
number of enemy entities in a cell, which can be 
influenced by a detailed prior distribution. To 
conceptualize the notion of threat density maps applied 
to combat simulations and to demonstrate its 
practicality and advantages, we coded and 
implemented in a rudimentary JavaScript simulation 
the aforementioned threat density map and for 
comparison, an adaptation of the probability threat 
maps (see Appendix 1) discussed in Darken et al. 
(2010).  
 
The notional scenario consists of a simulated infantry 
soldier (searcher) searching for an enemy fireteam to 
either engage them or to report their disposition, 
location, and actions. From intelligence data the 
searcher knows that enemy fireteam (targets) is not 
moving and consists of three entities close together and 
one scout far ahead. Figure 2(a) shows the targets 
actual distribution, i.e., 𝑥!! = 1,   𝑥!" = 3 , which is 

B-5



unknown to the searcher. Based on their doctrinal 
spatial dispersion and the size of a cell we initialized 
threat density maps for the individual cells assuming 
that any cell could contain one or three targets but not 
two or four, yet being free of enemy entities is even 
more probable than occupation by one or three. Figure 
1 shows an example of this prior for a single cell. 
Finally, we assumed a uniform prior to initialize the 
probability threat map and the probability of detection 
remained constant for the simulation, i.e.,   𝑃! = 0.65.  
 

 
Figure 1: Discrete prior distribution of 𝑡𝑚! for cell 𝑥! 
with 𝜀 = 0.4 assuming that it is more likely that the 

cell is occupied (containing either one or three targets) 
than empty. 

 
One of the main advantages of our Bayesian approach 
to threat density maps is the availability of a posterior 
distribution of the unknown number of targets in a cell 
rather than a single value as in the probability threat 
map approach. For example, consider the situation 
shown in Figure 2 in which the searcher sensed zero 
targets after inspecting cell 𝑥!. The low probability 
value in the probability threat map [Figure 2(b)] 
indicates that cell 𝑥! is less likely to contain one or 
more targets when compared to the other cells. 
However, the searcher lacks knowledge about the 
degree to which the cell 𝑥! is occupied, when in fact it 
can be empty or occupied by one or three targets 
because cell inspections are not perfect. The coarse 
threat knowledge provided by the probability threat 
map, although useful for search decisions is not 
sufficient for making decisions related to tactical 
courses of action. 
 
On the other hand, the threat density map posterior 
distribution summarizes the state of knowledge about 
the unknown number of targets in the cell conditional 
on the prior and sensing data. In contrast to the 
probability threat map, the threat density map in Figure 
2(d) suggests that although cell 𝑥! is more likely to be 
empty there is still a chance to find one or three targets 
in the cell. In this situation, the posterior distribution of 
𝑡𝑚! provides the searcher with a more accurate picture 

of the likely state of cell 𝑥!. This more detailed 
representation of threat knowledge provides the 
searcher the basis for a more confident course of action 
selection. 
 

 
Figure 2: Screenshot of the simulated scenario at time 
step 𝑡 = 0.25 where the searcher is depicted in blue 
and the targets are depicted in red (a), the probability 

threat map (b) and threat density map consisting of the 
expected number of targets (c) and the related 

probability distributions of the number of targets (d). 
 
Consider the situation in Figure 3 in which the searcher 
after inspecting several cells sensed two targets (dark 
red entities) in cell 𝑥!". For such situation, it would be 
difficult for the searcher to select a course of action 
that provides the best possibility of success based 
solely on the probability threat map. Therefore, it is 
appealing to quantify the searcher’s expectation of 
finding a number of targets at the cell. Updating the 
threat density map’s prior information with sensed 
data, provides interpretable answers, such as the event 
that 𝑡𝑚!" equals three has probability of one [Figure 
3(d)] thus, the searcher could expect to see three targets 
in the cell [Figure 3(c)]. Then, he can exploit this 
subjective knowledge to make reasonable decisions 
consistent with the likely state of the threat, for 
example, decide to search the cell for the unobserved 
target or to move out of the cell and avoid combat.  
 
Likewise, threat density map data can also be used to 
support reasoning. Consider a separate simulation run 
(Figure 4) in which the searcher sensed one target (dark 
red entity) in cell 𝑥!! given   𝑃! = 0.9. Based on the 
threat density map the searcher could assume with a 
high degree of certainty that he found the scout entity 
of the enemy fireteam and hence could use this belief 
for identifying the neighboring cell that could contain 

(a) (b) 

(c) (d) 
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the remaining three targets and to determine how he 
deploys, orient, and engages the remaining targets.  
 

 
Figure 3: Screenshot of the scenario and the state of 
subjective threat knowledge in which the searcher 

sensed two targets (depicted in dark red) in cell 𝑥!". 
 

 
Figure 4: Screenshot of the scenario and the state of 

subjective knowledge in which the searcher sensed one 
target (depicted in dark red) in cell 𝑥!!. 

 
3.1. Integrating Prior Information 
 
The incorporation of a prior density function for 𝑡𝑚! 
with prior information is the final favorable feature of 
the threat density map that differentiates it from the 
probability threat map. As previously mentioned, 
intelligence data or prior information is typically 

available for combat simulated scenarios. Regardless of 
the level of certainty of the prior information, we can 
use the aforementioned discrete prior density function 
or other suitable discrete distributions to describe 
uncertainty for 𝑡𝑚! in a mathematical model. However, 
from a modeling perspective the difficulty is in how to 
effectively integrate prior information from different 
sources (e.g., intelligence, doctrine, environment) using 
a prior density function (Blasco, 2007).  
 
In Figure 1 above we already demonstrated an example 
for initializing threat density maps given prior 
information and intelligence data (i.e. the total number 
of targets and their tactical formation). Below we 
briefly discuss two cases of prior information available 
common to combat simulated scenarios for initializing 
threat density maps.  
 
First, presume that the prior information available 
consists only of the total number of enemy entities (a 
fireteam of four entities) and their posture (not moving) 
but neither their actual location nor their tactical 
formation is known. In this situation of vague prior 
information is sensible to assume that any cell could 
contain up to four enemy entities and logically we can 
expect that many cells will be empty instead of 
occupied. Accordingly, we could set the value of 𝜀 to 
be 0.75 and utilize Eq. (1) to initialize threat density 
maps for each cell 𝑥! ∈ 𝑋. Figure 5 shows the prior 
distribution for cell 𝑥!.  
 

 
Figure 5: Discrete prior distribution of 𝑡𝑚! for cell 𝑥! 

assuming that it is more probable to be empty and 
equally likely to be occupied by at least one and no 

more than four targets. 
 
The plot in Figure 5 shows that it is more likely for a 
cell to be unoccupied and equally possible to be 
occupied by one, two, three, or four enemy entities. 
The expected number of enemy entities in each cell is 
1.875, thus the searcher can expect to find 
approximately two enemy entities in any particular cell 
at the next time step.  

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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Second, specific prior information can easily be 
incorporated through the prior density function. For 
example, suppose that from the most current 
intelligence data available it is known that there is a 
squad-size element in a linear defense, arrayed from 
the southwest corner of the area of operations to the 
northeast corner, heavily concentrated in cell 𝑥!!, 
defending the southeast sector of the area of operations, 
as depicted in Figure 6. Incorporating this prior 
information into the model can be done in a flexible 
manner and inferences can be compared under different 
priors in order to choose a prior that characterizes the 
most likely threat situation. One alternative, for 
example, is to set the value of 𝜀 equal to one for the 
cells known to be occupied and zero otherwise. Such 
an approach can be efficient but it does not account for 
the possibility that the situation could change before 
the searcher reaches any of these cells. Therefore, one 
could select other values of 𝜀 for the cells of interest. 
Perhaps another alternative is to deduce from doctrine 
and terrain data the maximum number of enemy 
entities that can occupy a cell and other relevant factors 
to initialize the priors for each cells that produce 
𝐸 𝑡𝑚!,!" = 2, 𝐸 𝑡𝑚!! = 5 , and zero otherwise. 
 

 
Figure 6: Screenshot of the location set with ground 
truth data. The searcher is depicted in blue and the 

targets in a linear defense, heavily concentrated in cell 
𝑥!!, are depicted in red. 

 
3.2. Current Limitations of Threat Density Maps 
 
As we have seen in the previous examples, there are 
significant advantages of augmenting combat simulated 
scenarios with threat density maps as they provide 
simulated entities with actionable subjective 
knowledge to make course of action decisions, which 
in turn determines other search, movement, and path 
planning behaviors. However, the proposed approach 
has some fundamental limitations. While the 
assumptions of independence and conditional 
independence, described in Section 2, allows us to 
solve the threat density maps for the individual cells, 
the model excludes features for modeling spatial 
dependencies and temporal effects. This limitation is 
evident in Figure 3(c) and 3(d) as the model properly 
estimates the expected number of enemy entities in the 

cell, i.e. 𝐸 𝑡𝑚!" = 3.0, essentially due to the 
inclusion of prior information into the model; however, 
it fails to exploit this information for estimating 𝑡𝑚! for 
the other cells. 
 
4. Conclusions and Future Directions 
 
In this paper we proposed a threat modeling approach 
for estimating the number of the enemy entities at a 
certain location in a given time interval. The model 
estimates the expected number of enemy entities as a 
posterior density map, can be initialized with 
intelligence reports and prior information, and works 
for any number of enemy entities and their spatial 
distribution. Although a threat density map approach is 
not required for all combat simulation models and 
scenarios, they offer several important advantages over 
probability threat maps that make them suitable for 
implementation in combat simulations for improving 
the representation of search, reasoning, and decision-
making behaviors.  
 
Efforts are underway to introduce probability 
distributions that can model threat movement. 
Furthermore, future work will focus on addressing 
known limitations and extending the proposed model 
by introducing spatial and temporal dependencies and 
interactions, and developing hierarchical threat density 
map representations. Finally, we plan to experiment 
with and characterize the utility of the model for 
improving the capabilities of simulated entities in a 
combat simulation scenario for different threat 
conditions. 
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Appendix 1: Probability Threat Map 
Adaptation 
 
In this section we briefly describe our basic adaptation 
of the probability threat maps approach discussed in 
Darken et al. (2010).  
 
Let 𝑞! be the conditional probability that an unseen 
enemy entity is present in cell 𝑥! ∈ 𝑋 and after 
inspecting cell 𝑥!, where 𝑥! ≠ 𝑥!, 𝑞! is the estimated 
probability before inspecting cell 𝑥!, and 𝑃! is the 
probability of detecting a target (see Section 2.2). 
According to the axioms of probability theory, 
0 ≤ 𝑞! ≤ 1 and the total probability over all 𝐶 cells is 

𝑞!!
!!! = 1. Suppose the searcher inspects cell 𝑥!, 

assuming that cell inspections are independent of 
neighboring cells, then, 𝑞! takes the form 
 

 

   

qi =
!qiIi + !q j 1− Pd( ) 1− Ii( )

!qi 'Ii ' + !q j 1− Pd( )
i '=1

C∑
  (9) 

 
where the term 𝐼! is an indicator function that equals to 
zero if 𝑥! = 𝑥! and equals to one otherwise.  
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Mission Command Analysis Using Monte Carlo Tree

Search in JDAFS

C-1



Introduction  
The TRAC Methods and Research Office has initiated an effort to improve 

analysis methodology for military operations employing network enabled mission 

command. Representation of network enabled operations has improved significantly in 

military simulation models over the past decade and a half; however, several key 

challenges remain. Foremost, is the need to rapidly produce relevant analysis accounting 

for the operational effects of network-enabled capabilities supporting mission command. 

TRAC-Monterey is carrying out supporting research to produce a documented 

and tested methodology that applies Monte Carlo Tree Search methods to decision 

situations in order to expand mission command oriented analysis. Mission command 

features decentralized execution with subordinate commanders exercising disciplined 

initiative while acting aggressively and independently to accomplish the mission within 

the commander’s intent. The methodology will improve analysis by extending data 

developed from operational data, wargames, and other subject-matter expertise elicitation 

into a simulation environment where more extensive and rigorous analysis can be 

accomplished. 

Scope of Work 
The scope this work was to design an implementation of MCTS method in the 

Fires Allocation (FA) scenario in the Joint Dynamic Allocation of Fires and Sensors 

(JDAFS) simulation environment. Programming and testing of the implementation was 

left to future work. 

The next section will give a brief overview of the JDAFS simulation, and 

following that, a brief overview of the Monte Carlo Tree Search algorithm. Following 

that will be a description of the design for adding MCTS to JDAFS for fires allocation. 

Finally, next steps will be discussed. 
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Joint Dynamic Allocation of Fires and Sensors (JDAFS) 
The Joint Dynamic Allocation of Fires and Sensors (JDAFS) is a low-resolution, 

constructive entity-level simulation framework that can be rapidly configured and 

executed and allows force-on-force analysis of differing UAS mixes.  This model can 

simulate UAS operations with optimization in the loop to gain greater insight into UAS 

interactions and interactions between UASs and sensor targets for a given NAI. 

JDAFS provides the ability to conduct quick operational analyses of Joint and 

Army assets by proving a model that is extremely flexible, configurable, and enables an 

analyst to very quickly create a simulation model that captures the first-order effects of a 

scenario. Currently, JDAFS represents aircraft schedules, but does not adequately 

represent deconfliction of air assets.  JDAFS is also ideally well suited for establishing 

Joint Starting Conditions for any given scenario. JDAFS provides an effective simulation 

modeling tool to provide quick-turn analysis of capability to compare operational policies 

and control measures in order to identify those polices and measures which provide the 

greatest operational performance, focusing primarily on fires and effects.  

Fires allocation 
A shooter platform has its fires directed by an instance of a Constrained Value 

Optimizer (CVO). The CVO is so-named because its initial implementation is to assign 

shooters to targets based on solving an optimization problem. The default CVO in JDAFS 

formulates an integer linear program based on which targets have been detected and 

which shooters are available. Since a shooter may have several types of munitions, the 

assignments are based on the properties of the munition-target pairings. For each pair, a 

coefficient is calculated for the objective coefficient in the linear program. The algorithm 

for this calculation is performed in an instance of a Value of Potential Assignment (VPA) 

class. The default one is described here, but the software has been written so that 

different computations could be made. 

The default VPA calculates the expected net value of engaging a shooter platform 

with a given weapon i against a given target j: where vj is the value of the 

shooter platform of weapon i, pij is the probability that target j is killed by munition i, vi is 

the value of the shooter platform of weapon i and pji is the probability that target j kills 
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the shooter of munition i when they engage. Thus, the optimization problem to be solved 

is: 

 

where Ai is the maximum number of targets that can be assigned to shooter i, Bj is the 

maximum number of shooters that can be assigned to target j, and Cj is the minimum 

number of shooters that must be assigned to target j. Note that the formulation is totally 

unimodular, and therefore the linear programming relaxation gives the optimal solution. 

Monte Carlo Tree Search (MCTS) 
Monte Carlo Tree Search (MCTS) is a method for finding optimal or near-optimal 

solutions by using Monte Carlo random sampling of potential decisions and building a 

search tree. The tree is used to evaluate the value of decisions, informed by the results of 

exploring various branches of the tree. When a pre-determined computational budget has 

been reached, the algorithm terminates with the action with the highest value is selected 

as the next “move.” Each node of the tree contains the (current) value of the node and the 

number of times it has been visited. The general form of the algorithm proceeds in four 

steps (Browne, et al, 2012): 

1. Selection. A child node that is expandable (i.e. is a non-terminal state and has 
unvisited children) is selected. 

2. Expansion. One (or more) child nodes are added to the selected node based on 
feasible actions. 

3. Simulation. A simulation is executed from each new node according to the 
default policy (described below) to produce an outcome. 
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4. Backpropagation. Each parent node of the selected one is updated to reflect 
the outcome. 

Two policies are applied that customize the general algorithm; these are: 

1. The tree policy determines which node is selected during the Selection step. 
2. The default policy determines how the game is played out from a given node 

to produce a value. 

The general MCTS approach can therefore be summarized by the following pseudo-code 

(Browne, et al, 2012): 

create root node v0 with state s0 
while within computational budget do 
  𝑣𝑙 ← 𝑇𝑟𝑒𝑒𝑃𝑜𝑙𝑖𝑐𝑦(𝑣0) 
 Δ ← 𝐷𝑒𝑓𝑎𝑢𝑙𝑡𝑃𝑜𝑙𝑖𝑐𝑦(𝑠(𝑣𝑙)) 
 𝐵𝑎𝑐𝑘𝑢𝑝(𝑣𝑙,Δ) 
return 𝑎(𝐵𝑒𝑠𝑡𝐶ℎ𝑖𝑙𝑑(𝑣0) 

The Tree Policy that will be used for JDAFS is based on the Upper Confidence 

Bounds for Trees (UCT) algorithm (Browne, et al, 2012). This selects the best child vj of 

node v based on the following formula: 

, 

where N(v) is the number of times node v has been visited, 𝑣𝑗is a child node of v, and 

Q(v) is the current value of node v. The node vj with the largest value of UCTj is the one 

selected next. 

Application of Monte Carlo Tree Search to JDAFS 

The logical place in JDAFS to apply the MCTS algorithm is for the allocation of 

fires. That is, to develop a replacement Constrained Value Optimizer (CVO) for JDAFS 

based on the MCTS algorithm described above. 

The implementation of a MCTS CVO would necessarily take into account the 

subsequent possible behavior of the model following the allocation. Specifically, the 

“simulation” stage of MCTS would involve replication s of simulating the subsequent 
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battle given a particular allocation. This has the potential of superior allocations, since the 

current default CVO is based on a static model. 

Implementing the simulation stage of MCTS involves having to solve several 

coding issues. First, JDAFS would need a mechanism to save the current “real” state of 

the model so it could be returned to following the output of the MCTS algorithm. It 

would need to be saved as an initial state for the simulation replications as well. Currently 

JDAFS does not support for this capability. 

Second, a means to restore and recover the state of the individual entities would 

need to be implemented, since the MCTS simulation would necessarily be modifying 

those states. 

Third, there are units in JDAFS that are not necessarily detected, and so would not 

be in the initial allocation list, yet would impact the simulation going forward. How to 

incorporate those undetected entities is a problem that would have to be solved. 

Finally, to fully take into account uncertainties about the enemy force, there 

would have to be a mechanism for forecasting what (undetected) enemy forces might 

exist and incorporating such pseudo-entities into the simulation stage of MCTS. 
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Appendix E

Glossary

COMBATXXI Combined Arms Analysis Tool for the 21st Century

EEA Essential Elements of Analysis

JDAFS Joint Dynamic Allocation of Fires and Sensors

MCTS Monte Carlo Tree Search

MOVES Modeling, Virtual Environments, and Simulation

NPS Naval Postgraduate School

TRAC Training and Doctrine Command Analysis Center

TRAC-MRO Training and Doctrine Command Analysis Center Meth-

ods and Research Office

TRAC-MTRY Training and Doctrine Command Analysis Center---

Monterey

TRAC-WSMR Training and Doctrine Command Analysis Center---

White Sands Missile Range

TRADOC Training and Doctrine Command
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